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In Silico Functional Profiling of Small Molecules and Its Applications
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In silico screening is routinely used in the drug discovery process to predict whether each molecule in a
database has a function of interest, such as inhibitory activity for a target protein. However, drugs generally
have multiple functions including adverse effects. In order to obtain small molecules with desirable
physiological effects, it is useful to simultaneously predict as many functions as possible. We employed
Support Vector Machine to build classification models for 125 molecular functions, derived from the MDDR
database, which showed higher kappa statistics (0.775 on average) than those of predictions by Tanimoto
similarity (0.708). By analyzing the patterns of the predicted values (functional profiles) of 871 marketed
drugs, we demonstrated its applications to indication discovery, clustering of drugs, and detection of molecular
actions related to adverse effects. The results showed that functional profiling can be a useful tool for
identifying the multifunctionality or adverse effects of small molecules.

Introduction

Since the 1990s, in silico screening has been widely used to
accelerate the drug discovery process in the pharmaceutical
industry. The screening predicts whether each molecule in a
database has a function of interest, such as affinity for a target
protein. The prediction methods are classified into 2D-based
methods, using descriptors calculated from 2D structures, and
3D-based methods, such as docking with a target protein or a
pharmacophore search. Among them, the 2D-based methods are
more or less based on the detection of structural similarities to
molecules that are known to have the target function, assuming
that similar molecules have similar functions.'* The comparison
of molecular fingerprints, which represent the structural features
of individual molecules, is a popular approach to similarity
detection.” Comparisons of descriptors based on the topological
structures of small molecules are also often used.*> However,
in cases where structurally different compounds have the same
functions, a simple similarity analysis does not work well. In
addition to the classical structural similarity, machine-learning
algorithms, such as an artificial neural network and Support
Vector Machine (SVM),*® have recently been used to develop
methods for recognizing the functionally important structural
patterns shared by a set of known active compounds.” '

In the in silico screening using the above methods, predictions
are usually made for only one or a few target function(s) that
the new drug candidates should have. However, a small
molecule drug can have multiple significant functions, including
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unexpected side effects, as shown by many examples.>~'7 As
a typical example, tricyclic antidepressants are known to have
some adverse effects, due to their interactions with off-target
proteins. The treatment with the tricyclic antidepressants causes
dry mouth, constipation, and ocular side effects due to their
anticholinergic activity;'® weight gain due to their antihista-
minergic activity;'® and hypotension through o-adrenergic
blockade.?® To assess the multiple functionalities of drug
candidates, it is desirable to make predictions on many possible
functions, including both target and off-target functions, in the
first in silico screening stage. Searching for molecules with
desirable “patterns of predicted functions” (called “functional
profiles” here) should facilitate the triage of better chemical
classes for further drug development.

Recently, several approaches have been reported to compre-
hensively identify the target proteins of small molecules.>' Fliri
et al. associated the molecular structures of small compounds
with their biological activity profiles, using 92 biological assays
to represent a cross section of the drugable proteome, called
Biospectra.?>** Muller et al. screened 2150 active sites from
the Protein Data Bank to identify the putative targets of five
small molecules using high-throughput docking.** Screening by
molecular docking can predict the affinities and the binding
modes of ligands complexed with their target proteins, unlike
screening based on molecular fingerprints or descriptors of the
ligands. However, molecular docking requires information about
the 3D structures and the appropriate binding sites of the target
proteins. In recent years, the throughput of X-ray and NMR
analyses of proteins has been largely improved; however, there
are still many target proteins with unsolved structures, and there
are also many diseases and adverse effects with molecular
mechanisms and target proteins that are not fully understood.
On the other hand, ligand-based approaches using machine-
learning algorithms are capable of predicting such functions
without complete knowledge of their mechanisms.'® Further-
more, the use of ligand-based approaches can save the cost and
calculation time required for in silico screening, as compared
with structure-based approaches.
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Figure 1. Overview of the functional profiling. The 2D structure of a compound (I) was compared with each of the reference compounds selected
from KEGG (II). The obtained vector was used as input for the prediction of the 125 functions using SVM (III). The functional profile of a

compound was defined as the array of the 125 predictions (IV).

In the present work, we have pursued this idea of “in silico
functional profiling” using ligand-based information and the
machine-learning technique. Classification models using SVM
were built to make predictions for 125 functions observed in
existing active compounds and/or marketed drugs in the MDL
Drug Data Report (MDDR) database. The functional profile of
each small molecule is defined as a 125-dimensional vector,
with components representing the results from the SVM
prediction models.

In addition, the potential use of in silico functional profiling
in drug discovery is discussed. The first application of functional
profiling is indications discovery. Since existing drugs approved
by regulatory agencies for human use have acceptable phar-
macokinetics and safety profiles in many cases, identifications
of existing drugs for new therapy are expected to reduce the
cost and accelerate the drug discovery process.>%° In this study,
we created functional profiles of 871 known drugs and
investigated compounds predicted to have diverse functions,
including new drug opportunities.

Second, we tried to classify the existing drugs based on the
functional profiles. Recently, the prospect that drugs that interact
with several molecular targets simultaneously will lead to new
and more effective medications was reported.27 However, it is
difficult to identify good combinations of targets for a particular
therapy. The clustering analysis based on the functional profiles
can contribute the discovery of better candidate combinations
for the therapy.

Finally, functional profiling was applied to detect the mo-
lecular actions that are relevant to the adverse effects. Previously,
Fliri et al. tried to associate Biospectra and the adverse effects
of drugs,”®*° and Bender et al. compared Bayesian-based
predictions about target proteins and adverse effects.’® In this
study, we focused on the human liver adverse effects and
introduced a mathematical measure to evaluate the relevancies
of the target proteins to the adverse effects. The functional
profiles of the existing drugs were compared to the information
about their human liver-related adverse effects. High propensities
were found in the components of the functional profiles of drugs
causing hepatotoxicity on some molecular actions that are known
to be relevant to the occurrence of the adverse effects.

Methods

A schematic diagram of our functional profiling is shown in
Figure 1. A compound was structurally compared to each of the
predefined reference compounds. The vector consisting of the
resulting structural similarities, representing the structural properties
of the compound, was used as the input for SVM. The predictions

of the 125 functions were performed one by one, using SVM models
learned from the MDDR database. The details of each calculation
step are described below.

Representation of Small Molecules. To apply SVM learning,
the structure of each small molecule was represented by a
multidimensional vector whose components were similarity mea-
sures against reference compounds. The reference compounds were
taken from the KEGG COMPOUND database, which is a chemical
structure database of metabolic compounds, macromolecules, and
other chemical substances, such as inhibitors of metabolic pathways
as well as drugs and xenobiotic chemicals that are relevant to
biological systems (10932 compounds as of April 2004).%'? The
similarity between two small molecules was calculated by our in-
house method, as described below. The reference compounds were
selected as follows. First, a compound was arbitrarily chosen from
the KEGG database as the first reference compound (7). Next, from
the remaining compounds in the database, another compound was
randomly chosen as the second reference compound (r,), such that
its similarity against r; was less than 0.75. In the same way, the ith
reference compound, r;, was selected, such that its similarities
against ry, ra,..., r,—; were all less than 0.75. The selection process
continued until there were no more compounds left with similarities
against the reference compounds selected thus far that were less
than 0.75. As a result, 173 reference compounds were obtained.
For a given small molecule compound, a 173-dimensional vector
was defined, such that its ith component was the similarity between
the compound and the ith reference compound. The vectors defined
in this way for small molecules were used as the inputs for making
the SVM models.

Structural similarities between two small molecules were cal-
culated by the following procedure. The atoms of the small
molecules were classified into seven pharmacophore features
according to the PATTY algorithm:33 “cation”, “anion”, “donor”,
“acceptor”, “polar”, “hydrophobic” and “other”. In addition, the
atoms of an aromatic ring were labeled as “aromatic”. For each
atom classified as “cation”, “anion”, “donor”, “acceptor”, or “polar”,
a pharmacophore distance matrix A = (a;;) was defined, where a;;
is the number of other atoms of type i at a distance j from the
atom (i € {“cation”, “anion”, “donor”, “acceptor”, “polar”, “hy-
drophobic”, “other”, “aromatic”}, 1 < j < 9). The distance between
two atoms was deﬁned by the length of the shortest path of covalent
bond counts between them in the chemical structure of the molecule.
In some cases, an ether oxygen (“acceptor”) of a molecule is
converted into a hydroxyl group (“polar”) in vivo. Therefore, it
was treated as 0.5 “acceptor’” atom plus 0.5 “polar” atom in defining
a;j. In order to avoid oversensitivity to small differences in distance,
a;j was modified to give a';;: a';; = 0.5a; - 1+a,J+05a,J+1 (@jj-1
=0ifj—1<0,a;+1 =0if j + 1 > 9). Next, a”;; was defined
to give more weight to polar atoms, because polar interactions, such
as hydrogen bonds and their geometry, are more important than
hydrophobic interactions for molecular recognition: a";; = uw;;a';,
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where u; = 10, w;; = 1 — j/9 if i = {*“cation”, “anion”, “donor”,
“acceptor”, “polar”} and u; = 3, w;; = max{1 — j/7, 0} if i =
{“hydrophobic”, “other”, “aromatic”}. For each pair of atoms from
two molecules, the Tanimoto coefficient (Tc) was calculated if the
atoms were of the same type and if they were “cation”, “anion”,
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where a";; and a",;; are as defined above for the two atoms.
Finally, the similarity between two molecules was measured by
the largest of all of the Tc values. If no Tc value was available,
then the similarity was set to 0. This method is based on counts of
atom pairs characterized by the graph distances and their types of
atoms, as with CATS* (atom pairs) and Similog® (atom triplets).
In both CATS and Similog, a molecule is represented by one vector.
However, a molecule is represented by several vectors in our
method. Each vector reflects the topological structure around each
atom in the molecule. The similarity between two molecules is
defined as the highest Tc among those between all possible pairs
of vectors representing atoms of the same type.

SVM Learning. SVM is regarded as one of the most popular
and effective machine-learning algorithms for pattern recognition
and classification. SVM models nonlinearly discriminate two classes
of compounds, by mapping data vectors to a very high dimensional
descriptor space and finding a hyperplane that separates the two
classes with the largest margin. The most significant difference
between SVM and simple linear discrimination is the so-called
“kernel trick”. Using a kernel function, such as a radial basis
function (Gaussian kernel), SVM can obtain a complicated nonlinear
separating hyperplane and is particularly effective for a difficult
classification problem, such as the prediction of biological activity.
A full description of the use of SVM for classification was reported
by Cristianini et al.**

For each of the 125 functions, the data set of small molecules
containing both positive and negative cases for the target function
was prepared using the MDDR database. All of the compounds
with each target function in MDDR were treated as positive cases
for the target. As negative cases, 5000 compounds without the
function in the MDDR database were randomly selected. Each of
these data sets was split for 5-fold cross-validation. Using the sets,
125 SVM models were built. The radial basis function (RBF) kernel
was adopted, because it has been used in previous studies with
good results.”'® The gamma parameter in the RBF kernel was
optimized so as to maximize the results of the cross-validations.
Here, the results of the prediction were evaluated using balanced
accuracy and kappa statistics. In general, accuracy (also called
concordance, (TP + TN)/(TP + FP + TN + FEN)) is not an
appropriate measure to assess a data set with an uneven ratio of
positive and negative compounds. In such cases, instead of accuracy,
balanced accuracy and kappa statistics are often used as measures.
Balanced accuracy is an average of positive and negative accuracies
and is defined as 0.5(TP/(TP + FN) + TN/(TN + FP)). Kappa
statistics means the true accuracy, by which the agreement by
chance is corrected. A value higher than 0.4 is desirable.® It is
defined as
P,—P,

o

1—P,

C

kappa = 2)
P, indicates the probability of observed agreement, (TP + TN)/
(TP + FN + FP + TN), and P, indicates the probability of chance
agreement, [(TP + FP)/(TP + FP + FN + TN)][(TP + FN)/(TP
+ FP + FN + TN)] + [(TN + EN)/(TP + FP + FN + TN)][(TN
+ FP)(TP + FP + FN + TN)].

The SVM'#" software®® was used for model building and
predictions. Cost factor, by which training errors on positive
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examples outweigh errors on negative examples, was defined as
the ratio between the number of positive and negative compounds,
in order to accommodate the difference in the number of positive
and negative cases. Other parameters, such as C, regulating the
tradeoff between minimization of training error and maximization
of margin, were set to the default values in SVMUsh,

The performances of the SVM predictions were compared with
those obtained by similarity searching, using the Tanimoto coef-
ficient between the MDL public keys (MACCS keys) fingerprint
(166 bits). The threshold of Tanimoto similarity, to distinguish the
positive and negative predictions, was determined so as to optimize
the mean of the balanced accuracies of the similarity-based
predictions about the 125 functions upon cross-validation.

Definition of the Functional Profile. In this study, the functional
profile of a molecule was defined as a 125-dimensional vector (xj,
X2,..., X125), Where its ith component x; was set to 1 when the SVM
model predicted the molecule is positive (the prediction value f;
from the SVM model for the ith function was >0); otherwise, x;
was set to 0. When a function of the molecule associated with the
ith component was already annotated in MDDR, the component
was also set to 1.

The 125 functions, as found in the annotations of MDDR, were
used as the prediction targets. These functions consist of 70
molecular actions, such as COX inhibitor or NMDA receptor
antagonist, and 55 therapeutic areas, such as antiinflammatory or
antihypertensive. The list of 125 functions is shown in Table 1.
Minor variations in the function annotations were ignored. For
example, inhibitors of different subtypes of a protein were treated
as a single functional category. Agonists and antagonists of a protein
were not discriminated in this study. Since MDDR is a hand-curated
database, in which the annotations describe only the presence or
absence of functions for each compound, the lack of a controlled
dictionary, the overlap of functions, and the incompleteness of
annotations are inevitable on some level. In order to address these
problems, we analyzed the results about molecular actions and
therapeutic areas separately or developed a statistical measure to
correct the bias from the overlap of the functions. The details of
each procedure are described in the corresponding sections.

Detecting Molecular Actions Closely Related to Adverse
Effects. The Human Liver Adverse Effects Database®” is a database
containing data of the adverse effects for 490 pharmaceuticals
developed by the FDA. Among the 490 pharmaceuticals, 314 are also
included in MDDR. The database contains data about the activity of
the liver enzyme composite module, alkaline phosphatase increase,
serum glutamic oxaloacetic transaminase (SGOT) increase, serum
glutamic pyruvic transaminase (SGPT) increase, lactate dehydrogenase
(LDH) increase, and y-glutamyl transferase (GGT) increase. The
activity of each compound is labeled as either “active”, “marginally
active”, or “inactive”. In this study, the “active” and “marginally active”
compounds were combined into the “active” class.

The relevancies of molecular actions to the liver-related adverse
effects were calculated by comparing the functional profiles of the
314 drugs and the information about their adverse effects. We
excluded 22 out of 70 molecular actions from the calculation,
because only two or fewer drugs out of the 314 drugs were predicted
to have the functions by our SVM models. The relevance of the
ith function to the jth adverse effect was defined by the following
procedure. The ratio of positive prediction of the ith function for
drugs that are active for the jth adverse effect (P;cive) Was defined
as

Ni,]',active (3)

J.active

P

ij,active

where N .ive represents the number of compounds that are active
for the jth adverse effect and N;j..ive represents the number of
compounds that are predicted or already known to have the ith
function and are active for the jth adverse effect. P;jnacive Was also
defined as follows:
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Table 1. 125 Drug Functions Used as the Prediction Targets

function no. of active compounds function no. of active compounds

(A) 70 Functions about Molecular Actions®

ACAT inhibitor 1385 K" channel activator 860
ACE inhibitor 493 K* channel blocker 256
acetylcholinesterase inhibitor 720 leukotriene agonist/antagonist 1481
adenosine agonist/antagonist 516 LHRH agonist/antagonist 179
adrenoceptor agonist/antagonist 398 lipid peroxidation inhibitor 595
aldose reductase inhibitor 916 lipoxygenase inhibitor 2699
AMPA receptor antagonist 506 MMP inhibitor 449
angiotensin 2 agonist/antagonist 2244 muscarinic agonist/antagonist 1112
antiestrogen 256 neurokinin agonist/antagonist 385
antioxidant 407 nitric oxide synthase inhibitor 417
aromatase inhibitor 556 NMDA receptor antagonist 1429
benzodiazepine 336 oxazolidinone 364
Ca’* channel blocker 1610 oxytocin antagonist 198
cAMP phosphodiesterase inhibitor 200 PAF analogue/antagonist 1440
carbapenem 1275 phosphodiesterase inhibitor 2131
carbonic anhydrase inhibitor 269 phospholipase inhibitor 720
CCK 820 PKC inhibitor 448
cephalosporin 1418 prolylendopeptidase inhibitor 300
cholinergic 289 prostaglandin 446
collagenase inhibitor 523 protease inhibitor 487
COX inhibitor 1282 quinolone 1075
dopamine agonist/antagonist 1838 renin inhibitor 671
elastase inhibitor 605 reverse transcriptase inhibitor 539
endothelin agonist/antagonist 906 serotonin agonist/antagonist 4313
estrogen 195 sigma antagonist 438
factor Xa inhibitor 508 squalene synthetase inhibitor 456
farnesyl protein transferase inhibitor 944 steroid reductase inhibitor 936
gastrin antagonist 327 substance P antagonist 1253
GP2b3a receptor antagonist 1255 thrombin inhibitor 931
growth hormone release promoting agent 280 thromboxane antagonist 835
H*/K" ATPase inhibitor 720 TNF inhibitor 807
histamine agonist/antagonist 297 topoisomerase inhibitor 241
HIV protease inhibitor 650 tyrosine kinase inhibitor 963
HMG-CoA reductase inhibitor 1023 vasopressin antagonist 276
IL-1 inhibitor 343 vitamin D analogue 355
(B) 55 Functions about Therapeutic Areas

agent for cognition disorders 6073 antineoplastic 12057
agent for pancreas disorders 310 antiobesity 1025
agent for pulmonary emphysema 575 anti-Parkinsonian 1176
agent for restenosis 671 antiprotozoal 269
agent for urinary incontinence 739 antipsoriatic 1907
analgesic nonopioid 2855 antipsychotic 3943
analgesic opioid 1057 antiulcerative 1816
anthelmic 374 antiviral 2817
antiacne 1253 antiviral AIDS 2679
antiallergic 8133 anxiolytic 4976
antianginal 2620 bone resorption inhibitor 551
antiangiogenic 546 bronchodilator 2172
antiarrhythmic 2160 cardiotonic 2294
antiarthritic 5769 gastric antisecretory 1641
antibacterial 2601 hair growth promoter 394
antibiotic 1763 hypolipidemic 4919
anticoagulant 1573 immunomodulator 1076
anticonvulsant 2485 immunostimulant 359
antidepressant 3986 immunosuppressant 1166
antidiabetic 2601 neural injury inhibitor 4393
antiemetic 1078 platelet antiaggregatory 4114
antifungal 1739 sedative/hypnotic 540
antiglaucoma 1095 signal transduction inhibitor 429
antihypertensive 9455 stimulant peristaltic 657
antiinflammatory 5217 treatment for osteoporosis 1475
antiischemic 1849 treatment for septic shock 991
antimalarial 256 vasodilator 948
antimigraine 1382

“ The numbers represent the number of drugs registered in MDDR. At least 179 drugs were found in MDDR for each function.

N; Jinactive ith function to the jth adverse effect (R;;) was defined as the ratio
T 4)
ij,Inactive N.. . ( of Pi,/',active and Pi,i,inaclive-
Js-inactive
P.. ..
where Njinacive and N jinacive T€present the number of compounds R, = _padive (5)
.. . . . L

that are inactive for the jth adverse effect and those predicted or SOP ij,inactive

known to have the ith function, respectively. The relevance of the R;; values are the “odds ratio” of functions and liver-related adverse
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effects. If the R;; value of a particular function-adverse effect pair
is significantly higher than 1.0, then the function should be closely
related to the occurrence of the adverse effect. In this study, the
functions with a relevance (R;;) to any adverse effect that exceeded
2.0 were investigated.

Results and Discussion

Prediction Performances of the SVM Models. Classification
models by SVM and Tanimoto similarity were built for the 125
functions and were validated by 5-fold cross-validation. The
means of the balanced accuracies (the average of the positive
and negative accuracies) of the 125 SVM models showed a
slightly higher value (0.912 (standard deviation: 0.093)), as
compared with the value (0.896 (standard deviation: 0.052)) of
the similarity-based models. The slight difference of the
balanced accuracy between the SVM models and the similarity-
based models mainly arose from the negative accuracies. The
means of the negative accuracies were 0.948 for the SVM
models and 0.902 for the similarity-based models, while the
means of the positive accuracies were 0.875 and 0.890,
respectively. The negative accuracies of the similarity-based
models significantly decreased, particularly when more than
3000 active compounds were associated for the functions in
MDDR. For example, in the prediction models for antineoplastic
activity (12057 active compounds in MDDR), the negative
accuracy of the similarity-based model showed a much lower
value (0.565) than that of the SVM model (0.845). It is
reasonable that the SVM models maintained high prediction
performances for negative accuracies in those cases, because
machine learning can learn information about negative com-
pounds in addition to positive compounds. According to the
previous studies using the SVM method for protein targets, the
balanced accuracies were 0.891 (carbonic anhydrase II),
approximately 0.95 (factor Xa), and 0.85 (kinase inhibitors)."
Although the performances of the models could not be directly
compared, because of the differences in the data sets and the
activity criteria, the balanced accuracies of our SVM models
for carbonic anhydrase inhibitors, factor Xa inhibitors, and
tyrosine kinase inhibitors showed higher values (0.974, 0.963,
and 0.908, respectively) than those of the reported models.

When the ratios of positive and negative compounds are
largely biased, it is difficult to compare the prediction perfor-
mances of classification models by accuracy. In such cases,
kappa statistics is widely used to assess the prediction perfor-
mances of classification models. Kappa statistics subtracts the
probability of random agreements from accuracy (eq 2).
According to the equation, the kappa statistics of a random
model (compounds are randomly predicted by the ratio of
positive and negative compounds in the training set) or a one-
side model (all compounds are positively predicted or all
compounds are negatively predicted) results in 0, where perfect
predictions result in 1.0. For example, consider a data set
consisting of 10 positive and 90 negative compounds. If a model
predicts all 100 compounds as negative, then the accuracy has
a very high value (0.900). However, the model cannot predict
true positives at all. In contrast, the balanced accuracy and the
kappa statistics of the model are 0.500 and 0. Obviously, the
balanced accuracy and the kappa statistics more adequately
assess the prediction performance of the one-side model, which
cannot predict positive compounds, than the simple accuracy,
and the kappa statistics show the true performance of models
over accidental coincidence. In our data sets, the ratios of
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positives and negatives are also uneven (1:7.70 on average).
Therefore, kappa statistics is expected to assess the true
performance of prediction models for our data sets. The 125
SVM models recorded higher kappa statistics than those yielded
by the similarity-based models in 108 out of the 125 functions
(86.4%) (Figure 2). The kappa statistics of vasopressin antago-
nist models by the SVM and similarity-based methods were
0.851 and 0.534, respectively, which represented the largest
difference among the 125 functions. On the other hand, the
balanced accuracies of the predictions by the two methods
yielded the almost same values (0.926 and 0.939). This
distinction arose from the difference in the precision (true
positive rate of all positively predicted compounds, TP/(TP +
FP)). On the 5-fold cross-validation, each vasopressin antagonist
test set contained about 55 positive samples and 1000 negative
samples, on average. The SVM-based model predicted 55
compounds as positive, and 47 of these compounds were
actually positive (precision: 0.860). However, the similarity-
based model predicted 130 compounds as positive, and less than
half of them (53 compounds) were actually positive (precision:
0.408). The kappa statistics of the vasopressin antagonist models
appropriately reflected the differences in the precision, as
compared with the balanced accuracy. The means of the kappa
statistics of the predictions by the SVM and similarity-based
models about the 125 functions were 0.775 and 0.708, respec-
tively. In 100 of the 125 functions (80.0%), the kappa statistics
exceeded 0.700, and those about molecular actions (0.816 on
average) were higher than those about therapeutic areas (0.721
on average). The difference in the kappa statistics indicated that
the therapeutic areas consisting of drugs with multiple mech-
anisms of action included more diverse chemical structures and
were difficult to predict correctly. The high balanced accuracies
and kappa statistics indicated that our SVM models have
excellent predictability for the 125 functions of the MDDR
compounds. The structures and CAS numbers of the five most
positively predicted compounds, which were not annotated in
MDDR, for 70 molecular actions and 55 therapeutic areas are
provided in the Supporting Information.

Functional Profiling of Existing Drugs. To investigate the
multifunctionality of existing small molecule drugs, 871 drugs
were selected from the MDDR database for functional profiling.
They were all “launched” drugs and had 10—35 non-hydrogen
atoms, including at least one charged or polar atom. The 125
SVM prediction models were applied to each of these small
molecule drugs. The functional profiles of the 871 drugs are
shown in the Supporting Information.

Among the 1200 annotations of drug—function relationships
already registered in MDDR, 986 annotations were correctly
predicted. Furthermore, 6058 novel drug—function pairs were
predicted through the functional profiling in addition to the
already known functions.

The number of positively predicted functions (d) of each
molecule can reflect the functional diversity of a molecule:

d=3 x (6)

=1

The values for d ranged from 0 to 27 among the 871 molecules,
and the mean and standard deviation were 8.28 and 4.62,
respectively. The mean value of d (8.28) is much larger than
expected, because the number of annotations per molecule in
MDDR is only 1.37, on average.
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>(.7: “agent for pulmonary emphy-

“antidepressant” and “anxiolytic” (0.762); “antidepressant” and
“serotonin agonist/antagonist” (0.738); and “dopamine agonist/

showed no significant correlations, the following eight pairs gave
antagonist” and “serotonin agonist/antagonist” (0.716).

correlation coefficients of
sema” and “elastase inhibitor” (0.874); “antipsychotic” and

“dopamine agonist/antagonist”

“serotonin agonist/antagonist

13

antipsychotic” (0.785); “

125 x 124/2) pairs of functions, the mean

Some of the 125 functions were closely related to each other

Figure 2. Kappa statistics of the 5-fold cross-validation of the SVM models (black solid line) and similarity searching using the Tanimoto coefficient
(e.g., “serotonin agonist/antagonist” and ‘“‘antipsychotic”) and

of the MACCS keys fingerprint (red dotted line) on 70 molecular actions (A) and 55 therapeutic areas (B).

and standard deviation of the correlation coefficients were 0.022
and 0.152, respectively. The distribution of the correlation
coefficients is shown in Figure 3. Although most of the pairs

and jth functions, f; and f;, were calculated (1 =< ij < 125,i =

correlation coefficients between the SVM outputs for the ith
J). For the 7750 (

therefore gave positively correlated prediction results. The
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Figure 3. The histogram of correlation coefficients between SVM
predictions about the 125 functions.

Table 2. The 20 Most Functionally Diverse Drugs®

rank name CAS number d d
1 dexmedetomidine 113775-47-6 15 12.49
2 droxicam 90101-16-9 18 12.47
3 midazolam 59467-70-8 20 12.38
4 phenindione 83-12-5 18 12.16
5 emorfazone 38957-41-4 17 12.14
[§ iobenguane 77679-27-7 16 11.66
7 ondansetron 99614-02-5 18 11.64
8 flunitrazepam 1622-62-4 18 11.61
9 imiquimod 99011-02-6 16 11.60
10 croconazole 77174-66-4 17 11.56
11 ibudilast 50847-11-5 18 11.46
12 caffeine 69-22-7 16 11.44
13 afloqualone 56287-74-2 16 11.31
14 riluzole 1744-22-5 15 10.78
15 disulfiram 97-77-8 16 10.78
16 ormeloxifene 31477-60-8 20 10.77
17 oxandrolone 53-39-4 16 10.75
18 exalamide 53370-90-4 13 10.32
19 cinnoxicam 87234-24-0 14 10.28
20 clobazam 22316-47-8 17 10.14

“ The top 20 among the 871 existing drugs are listed in the order of the
functional diversity, d'. d, the number of positively predicted functions. d',
the functional diversity value.

To avoid counting highly correlative or synonymous functions
separately, the functional diversity, d', of each molecule was
defined as follows:

25,

d = Z ETT (7

=1 2 ij,ijz
f=

where R'; = max{0, R;} and Rj is the correlation coefficient
between f; and f;. The mean and standard deviation of d' were
5.26 and 2.28, respectively. Table 2 lists the top 20 molecules
in terms of the functional diversity, d'. Among the listed
compounds, dexmedetomidine (d' = 12.49), and midazolam (d'
= 12.38) were already well investigated in terms of their side
effects in a clinical study and are useful to test our prediction
results. These two compounds are highlighted in bold font in
Table 2. We compared the predicted functional profiles of these
two compounds with their reported side effects and off-target
functions.
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Figure 4. Dexmedetomidine and drugs with potentially related
functions: (1) dexmedetomidine (CAS number, 112775-47-6), (2)
mivazerol (125472-02-8), (3) apraclonidine (73218-79-8), (4) perceptin
(213027-19-1), and (5) vorozole (118949-22-7). Dexmedetomidine was
predicted to share some functions with the drugs (2)—(5). The shared
functions are shown in the boxes around dexmedetomidine and the
associated drugs.

Dexmedetomidine. Dexmedetomidine (Figure 4 (1)) showed
the highest functional diversity (d = 15, d' = 12.49) among
the 871 drugs. According to the MDDR database, it is an
adrenergic a2 agonist with the known functions of (i) sedative/
hypnotic and (ii) analgesic nonopioid. These two functions were
correctly predicted in the functional profiling. In addition to
these, the following functions were positive in the functional
profile: (iii) antianginal, (iv) antiglaucoma, (v) platelet antiag-
gregatory, (vi) antihypertensive, (vii) antiobesity, (viii) histamine
agonist/antagonist, (ix) agent for cognition disorders, (x) aro-
matase inhibitor, (xi) lipoxygenase inhibitor, (xii) antidepressant,
(xiii) antidiabetic, (xiv) antineoplastic, and (xv) HY/K™ ATPase
inhibitor.

The predicted functions other than sedative/hypnotic activity
and analgesic activity, which were previously annotated for
dexmedetomidine in MDDR, were validated. Some other
adrenergic 02 agonists similar to dexmedetomidine are known
to have the functions iii (Figure 4 (2)) and iv (Figure 4 (3)).
There are some studies reporting that dexmedetomidine has the
functions v*® and vi.** Adrenergic a2 antagonists are known to
have the function vii,*° although dexmedetomidine is an agonist.
A histamine agonist/antagonist (viii) can have an effect on
appetite through its interaction with histamine H1 receptor, and
therefore may be involved in the function vii. Perceptin (Figure
4 (4)), which is a histamine H3 antagonist with the function ix,
shares an imidazole ring with dexmedetomidine. Vorozole
(Figure 4 (5)), which is structurally similar to dexmedetomidine,
is known to have the function x. Dexmedetomidine reportedly
has an antiinflammatory effect in rats during endotoxemia,*’
which supports the predictions of the functions viii and xi. By
the inhibition of histamine receptor or lipoxygenase, or both of
them, many antidepressants (xii) are known to be related to the
adrenergic a2 agonist action as well as the functions i, ii, and
viii.

Functional profiling of dexmedetomidine indicated not only
its major functions annotated in MDDR but also minor functions
reported in some papers. Therefore, the functional profile could
well represent the features of the more comprehensive effects
on humans by dexmedetomidine. In particular, the detection of
the functions of drugs structurally similar to dexmedetomidine
and the potential mechanisms of its antiinflammatory activity
provided insight into the potential use of functional profiling
for indication discovery.

Midazolam. Midazolam (Figure 5 (1)) showed the second
largest functional diversity value (d = 20, d' = 12.38).
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Figure 5. Midazolam and drugs with potentially related functions:
(1) midazolam (CAS number, 59467-70-8), (2) diazepam (439-14-5),
(3) nevirapine (129618-40-2), (4) 1 (179024-48-7), (5) 2, (6) denbuf-
ylline (57076-71-8), (7) talampanel (161832-65-1), (8) 3 (131614-02-
3), and (9) resiquimod (144875-48-9). Midazolam was predicted to
share some functions with the drugs (2)—(9). The shared functions are
shown in the boxes around midazolam and the associated drugs.

According to the MDDR database, it is known to be (i) sedative/
hypnotic and (ii) benzodiazepine. These two functions were
correctly predicted in the functional profiling. In addition to these
functions, the following functions were positive in the functional
profile: (iii) anxiolytic, (iv) anticonvulsant, (v) H/K* ATPase
inhibitor, (vi) neural injury inhibitor, (vii) antiulcerative, (viii)
PAF agonist/antagonist, (ix) antiinflammatory, (x) antiallergic,
(xi) antiarthritic, (xii) immunomodulator, (xiii) immunosup-
pressant, (xiv) reverse transcriptase inhibitor, (xv) antiviral
AIDS, (xvi) phosphodiesterase inhibitor, (xvii) bronchodilator,
(xviii) agent for cognition disorders, (xix) AMPA receptor
antagonist, and (xx) gastric antisecretory.

In fact, midazolam is often used for the functions iii and iv
in clinical practice. Diazepam (Figure 5 (2)), another benzodi-
azepine (ii) with the function i, reportedly has the functions v,
vi, and vii.** Midazolam was reported to attenuate platelet
activation (viii) in thrombotic and inflammatory disease (ix).®
Platelet activation was reported to play significant roles in
allergic asthma (x)** and rheumatoid arthritis (xi).*> Sedative/
hypnotic benzodiazepine agents, including midazolam, are
known to have the functions xii and xiii in general.*¢™*
Nevirapine (Figure 5 (3)), a reverse transcriptase inhibitor (xiv)
with the function xv, has a tricyclic substructure similar to that
of midazolam. Midazolam must not be coadministered with
reverse transcriptase inhibitors, because they both inhibit the
metabolizing enzyme cytochrome P450 3A4.*>-*° Compounds
1 (CI-1018; Figure 5 (4))°' and 2 (YM-976; Figure 5 (5))°* are
phosphodiesterase inhibitors (xvi). They are known to have the
functions x and xvii, respectively. They share similar ring-system
or pharmacophore allocations with midazolam. There is another
phosphodiesterase inhibitor, denbufylline (Figure 5 (6)), which
has the function xviii. Talampanel (Figure 5 (7)), 3 (E-6123;
Figure 5 (8)),* and resiquimod (Figure 5 (9)) also share
similar substructures with midazolam. They have the functions
Xix, viii, and xiii, respectively.

As in the case of dexmedetomidine, the anxiolytic activity
and the anticonvulsant activity of midazolam, which were not

Sato et al.

Figure 6. Hierarchical clustering of existing drugs according to their
functional profiles. The cluster characterized by CNS action (A) was
separated into potential NMDA receptor inhibitors (A;) and others (A,),
and A, included two subclusters characterized by potential interactions
with histamine receptors (A, ;) and antiischemic effects (A,,). Some
of the antiinflammatory drugs were grouped into an isolated cluster
(B). A cluster characterized by cardiovascular action (C) was divided
into three subclusters, characterized by Ca>" channel blockade (C),
ACE inhibition (C,), and other cardiovascular actions (Cs). The thin
red horizontal line spanning the entire dendrogram indicates a clustering
threshold, which yielded the 23 clusters used in Figure 8.

annotated in MDDR, were successfully detected. The examples
of dexmedetomidine and midazolam demonstrated that our
functional profiling is useful to provide candidates for indication
discovery.

Clustering of Existing Drugs. It is known that drugs with
different molecular mechanisms of action can have a similar
therapeutic effect. For example, steroidal and nonsteroidal
antiinflammatory drugs act on different proteins to exert a similar
effect. In addition, drugs can have a common efficacy by a
shared mechanism, while showing different side effects. For
example, aspirin and celecoxib are both antiinflammatory drugs
that inhibit COX-2, but they show vastly different off-target
interactions and side effects.'>> Therefore, simply predicting
whether or not a drug has a given function provides little
information on its mechanisms of action. In general, most drugs
have a wide variety of side effects besides their main effects.
Their different target specificities against many other off-targets
(i.e., functional profiles) are likely to lead to different sets of
effects.

In order to investigate the relationship among target specifici-
ties, therapeutic effects, and adverse effects, we tried hierarchical
clustering of the 871 drugs, based on their functional profiles.
The Ward method was used for the clustering, using R.>® The
similarity (or dissimilarity) between two drugs was measured
by the Euclidean distance between their functional profiles. The
clustering result is shown in Figure 6. Three clusters, A, B,
and C, and their subclusters in Figure 6, were found to be
populated with drugs that had many positively predicted
functions in common in their functional profiles, and therefore,
these clusters were likely to reflect the similarities in the
mechanisms of action of their member drugs. As representative
scaffolds in the clusters A, Ay, Az, B, Cy, Cy, and C;, the
maximal common substructures of their cluster members
generated by Pipeline Pilot>’ are shown in Figure 7.

Cluster A contained 176 drugs. Many of them were drugs
acting on the central nervous system (CNS). The whole set of
871 drugs contained 44 antidepressants, 40 antipsychotics, and
25 serotonin agonists/antagonists in total, according to the
MDDR annotations. Among these, 32 (72.7%), 31 (77.5%), and
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Figure 7. Maximum common substructures of the compounds in the
cluster Ay, Az, Azp, B, Cy, Cy, and C; generated by Pipeline Pilot.
Each substructure was shared by at least 10% of the compounds in the
cluster. The frequency of the appearance of each substructure in the
cluster and the number of bonds in each substructure are shown.

21 (87.5%) drugs, respectively, were included in this cluster.
Among the 176 members of cluster A, 150 (85.2%) were
positive for “antipsychotic” in their functional profiles, 140
(79.5%) were positive for “serotonin agonist/antagonist”, 143
(81.3%) were positive for “anxiolytic”, and 131 (74.4%) were
positive for “antidepressant”. This cluster included several
subclusters with different characteristics in their functional
profiles. They are described in more detail later.

Cluster B contained 37 drugs. All of them were positive
for “antiinflammatory” in their functional profiles, 35 (94.6%)
were positive for “antipsoriatic”, 33 (89.2%) were positive
for “antiacne”, 31 (83.8%) were positive for “antiallergic”,
30 (83.3%) were positive for “antiarthritic”, 28 (77.8%) were
positive for “IL-1 inhibitor”, 25 (67.6%) were positive for
“COX inhibitor”, 24 (64.9%) were positive for “leukotriene
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agonist/antagonist”, 24 (64.9%) were positive for “phospho-
lipase inhibitor”, and 25 (67.6%) were positive for “platelet
antiaggregatory”. The whole set of 8§71 drugs contained 55
antiinflammatory agents in total. Of these, 17 were placed
into this cluster.

Cluster C contained 97 drugs. Seventy eight (80.4%) of
them were positive for “antihypertensive” in their functional
profiles, 49 (50.5%) were positive for “cardiotonic”, and 54
(55.7%) were positive for “antianginal”. Among the 97
antihypertensive agents in the set of 871 drugs, 54 were
placed into this cluster. The cluster consisted of three
subclusters, C;, C,, and C; (Figure 6), containing 9, 18, and
70 drugs, respectively. They were characterized by their
notably different positive ratios for the following seven
functions: antihypertensive, antianginal, Ca?* channel block-
er, antiarrhythmic, bronchodilator, platelet antiaggregatory,
and ACE inhibitor (Figure 8). All of the C; members were
known ACE inhibitors. The subcluster C, included 8 of the
18 Ca®* channel blockers in the set of 871 drugs.

As described above, cluster A was characterized by
functions in the CNS. This cluster was further divided into
two subclusters, A; (78 drugs) and A, (98 drugs) (Figure 6).
The major difference between them was found in their
positive ratios for the function of “NMDA receptor antago-
nist”. While no member of A; was positive for the function,
65.3% of the A, members were positive. A, included two
subclusters, A,; (22 drugs) and A,, (30 drugs), whose
members were all positive for “NMDA receptor antagonist”.
The NMDA receptor is a target of antiischemic agents,’® and
all members of subcluster A,, were positive for the thera-
peutic area of “antiischemic”. However, A,; was only 36.4%
positive for that. Other significant differences between A,
and A,, were observed on “gastric antisecretory” (A,
72.7%; A, 5, 0.07%) and “antiobesity” (100.0%; 56.7%). The
drugs in cluster A, that were positive for “NMDA receptor
antagonist”, “gastric antisecretory”, “antiobesity”, and nega-
tive for “antiischemic” in their functional profiles were all
tricyclic antidepressants. Tricyclic antidepressants are known
to inhibit NMDA receptors;59 however, they are not used
for the treatment of ischemia, in contrast to the drugs in
cluster A,,. A blockade of gastric histamine H2 receptor
causes the gastric antisecretory effect. Histamine decreases
appetite via the cerebral histamine H1 receptor. Histamine
H3 receptor antagonists are promising antiobesity drugs.®°
Histamine release from nerve endings is enhanced in ischemia
to contribute to neuroprotection against ischemic damage,
and the blockade of cerebral histamine H2 receptors ag-
gravates ischemic injury.®' Therefore, the A,, drugs may
potentially interact with histamine receptors. In fact, tricyclic
antidepressants are also known to inhibit histamine H1 and
H2 receptors. They can cause weight gain via cerebral H1
receptor blockade and have been used for the treatment of
peptic ulcer, due to their gastric H2 receptor blockade and
antisecretory effects.®?> These results suggest that NMDA
receptor inhibitors can be safe and better antiischemic drugs
by exerting their interactions with histamine receptors.

Relevancies of the Functions to Human Liver Adverse
Effects. Table 3 shows the 17 functions whose calculated
relevancies (R;)) to at least one of the human liver adverse effects
were higher than 2.0. The highest relevancies detected in this
study were those of HMG-CoA reductase inhibitor, to increase
both liver enzyme composite activity and GGT. In this case,
Pjjaciive» Which represents the ratios of positive prediction of
HMG-CoA inhibition for drugs with composite activity increase
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Figure 8. In silico functional profiles of existing drugs. The functional profiles of the 871 existing drugs are represented by the matrix of 125 rows
and 23 columns. The rows correspond to the 125 functions used in the functional profiling. Each column corresponds to the functional profiles of
drugs in one of the 23 clusters, as defined in Figure 6. Each component of the matrix shows the positive ratio of the corresponding cluster for the
corresponding function, i.e., the percentage of member drugs in the cluster that was positive for the function in their functional profiles. The
positive ratios are indicated in a gray scale, ranging from black (0%) to red (100%). The 23 clusters of the drugs are arranged in the same order
as in Figure 6. The clusters characterized by the CNS action (A), the antiinflammatory effect (B), and the cardiovascular action (C) are indicated
by bars below the matrix. The positive ratios (%) of the clusters A, B, and C and their subclusters A, ;, Ay, Cy, C,, and C; (as defined in Figure
6) are shown for some functions that characterized these clusters.

Table 3. Relevancies of the Functions to the Human Liver Adverse Effects®

function composite activity alkaline phosphatase increase SGOT increase SGPT increase LDH increase GGT increase
HMG-CoA reductase inhibitor 27.0 4.756 3.273 3.776 9.364 27.0
acetylcholinesterase inhibitor 4.5 2.378 2.182 0.944 2.341 4.5
TNF inhibitor 3.6 3.805 0.655 1.510 1.873 3.6
K" channel activator 3.0 1.585 1.091 1.259 3.121 3.0
carbonic anhydrase inhibitor 2.25 1.189 0.818 0.944 4.682 2.25
tyrosine kinase inhibitor 2.25 1.189 1.636 1.888 0.0 2.25
cAMP phosphodiesterase inhibitor 2.25 3.171 1.636 2.517 4.682 2.25
squalene synthetase inhibitor 2.25 1.585 0.818 0.944 0.669 2.25
Ca’* channel blocker 2.05 1.081 1.206 0.899 0.814 2.045
H*/K" ATPase inhibitor 2.0 1.057 0.727 1.416 0.936 2.0
reverse transcriptase inhibitor 1.929 2.594 2.909 2.643 3.902 1.929
muscarinic agonist/antagonist 1.5 2.378 1.091 1.259 1.561 1.5
dopamine agonist/antagonist 1.421 1.057 2.104 2.014 0.936 1.421
COX inhibitor 0.75 2.378 1.636 1.510 1.702 0.75
adenosine agonist/antagonist 0.0 3.567 1.309 1.510 1.873 0
carbapenem 0.0 0.0 3.273 3.776 9.364 0
leukotriene agonist/antagonist 0.0 1.057 0.727 0.839 2.081 0
topoisomerase inhibitor 0.0 1.359 2.618 1.888 1.338 0

“The relevancies to each adverse effect were defined by eq 4. The functions are ordered by the relevancies to liver enzyme composite module activity
increase.

or GGT increase, was 0.1304, while the ratio of negative
prediction, Pjjinacive» Was 0.004831. Thus, R;; was 27.0, indicat-
ing that HMG-CoA inhibitors are closely related to the
occurrence of composite activity increase and GGT increase.
Hepatotoxicity was reported as the major complaint during
therapy with HMG-CoA reductase inhibitors, along with myo-
toxicity.®® Although the cellular mechanisms underlying the liver

injury are not fully understood, some hypotheses are that HMG-
CoA reductase inhibitors reduce mitochondrial coenzyme Q10
in hepatocyte, and at higher concentrations, they increased DNA
oxidative damage and a reduced ATP synthesis and were
associated with a moderately higher degree of cell death.®* The
groups of acetylcholinesterase inhibitors, carbapenem, reverse
transcriptase inhibitor, tyrosine kinase inhibitor, topoisomerase
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inhibitor, and calcium channel blocker also include agents with
reported hepatotoxicity. Although the 314 drugs did not include a
known topoisomerase inhibitor and a known tyrosine kinase
inhibitor, the relevancies of topoisomerase inhibitor and tyrosine
kinase inhibitor to the liver adverse effects were detected by the
use of functional profiles of the drugs. Topoisomerase inhibition
by camptothecin reportedly caused inhibition of mRNA synthesis
in hepatocytes and sensitized them against TNF-mediated apop-
tosis.®® Thus, we successfully identified high risk functions, such
as HMG-CoA reductase inhibitor causing liver-related adverse
effects, by assessments based on our functional profile.

Conclusion

In the present work, a method for in silico functional profiling
of small molecules was developed. The functional profile of each
molecule was created from predictions on 125 functions. The
application to existing drugs showed that the functional profiling
can be useful in capturing the multifunctionality or adverse effects
of small molecules. The profiling detected not only the well-known,
major functions of the drugs but also other minor or potential
functions that were suggested in the literature or consistent with
the known functions, as shown by the examples of dexmedeto-
midine and midazolam. The profiling can thus be useful for
indication discovery from existing drugs or, conversely, screening
out molecules that have undesirable functions.

In high throughput screening, many compounds are often
identified as frequent hitters: they act noncompetitively, show
little relationship between structure and activity, and have poor
selectivity.®® Obvious frequent hitters were not found through
the functional profiling of the existing drugs. In this study,
dexmedetomidine and midazolam were predicted to have the
most diverse functions among the 871 existing drugs, and many
of these functions were not annotated in MDDR. By investigat-
ing the functions of the drugs reported so far, the majority of
the functions that appeared in the functional profiles of
dexmedetomidine and midazolam were their known functions
or the functions of structurally similar molecules. This suggested
that dexmedetomidine and midazolam have many functions
indeed and are not so-called frequent hitters. Frequent hitters
could appear if nondrug-like molecules were profiled. The
predicted functions exemplified by dexmedetomidine and mi-
dazolam can be promising candidates for indication discovery.

The cluster analysis of the functional profiles of existing drugs
showed that the differences in the mechanisms of action can
be recognized by comparing the functional profiles. For example,
the group of NMDA receptor inhibitors was separated into two
groups, “antiischemic” and “nonantiischemic”. Analyses of both
groups suggested that releasing interactions with histamine
receptors are important to develop antiischemic drugs. The
consideration of interactions with histamine receptors in addition
to the NMDA receptor would contribute to efficiently identify
promising chemical series at the early screening stage. Thus,
functional profiling would make it possible to search a database
for molecules with desirable functional mechanisms. The in
silico screening using functional profiling can provide a more
focused and promising set of drug candidates than the conven-
tional in silico screening strategy for only one target, from the
viewpoint of target specificity and toxicity.

The comparison of the functional profiles and the liver adverse
effect data has led us to the detection of proteins such as HMG-
CoA reductase, which is known to cause hepatic injuries.
Hepatotoxicity involves many factors and, therefore, is caused
by various molecular mechanisms, including unknown ones. The
relevancies to hepatotoxicity of topoisomerase inhibitor and
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tyrosine kinase inhibitor, for which 314 drugs used in the
analysis lacked annotations in MDDR, were detected using
functional profiling. It suggests that the profiling in terms of
various functions could be useful to deal with the functions for
which only a limited amount of annotation data is available.

In this work, our functional profiling was based on the set of
125 functions, for which sufficient numbers of drugs were
registered in the MDDR database. Obviously, if more diverse
functions were taken into account using more comprehensive
databases, then the functional profiling would be able to
recognize the desirable functional profile of each drug class more
comprehensively and accurately.
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